• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:施展,李健,杨钧,唐佩,王永山,王帅.基于双层路由注意力的文献中手写体甲骨文检测方法研究[J].软件工程,2025,28(6):34-39.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于双层路由注意力的文献中手写体甲骨文检测方法研究
施展1,李健1,杨钧1,唐佩1,王永山1,王帅2
(1.陕西科技大学电子信息与人工智能学院,陕西 西安 710021;
2.陕西师范大学历史文化学院,陕西 西安 710062)
221612161@sust.edu.com; lijianjsj@sust.edu.cn; 211612101@sust.edu.cn; 221611058@sust.edu.cn; lswx0925@gmail.com; 447561195@qq.com
摘 要: 针对文献中手写体甲骨文的检测工作数据集空缺、目标占比低等问题,构建了首个文献中手写体甲骨文的检测数据集,并基于 YOLOv8提出了一种基于双层路由注意力的检测方法YOLO-SA(YOLO with Stratified Attention)。该方法利用滑窗裁剪技术提升目标占比,引入双层路由注意力模块增强模型对甲骨文有效信息的提取,并采用SIoU损失函数替代原损失函数,提升小目标检测的准确度。实验结果表明,YOLO-SA在自建数据集上的精确率达到90.2%,召回率达到92.3%,相较基线方法分别提升了17.9%和17.7%,证明自建数据集的实用性和所提方法的有效性。
关键词: 文献图像  甲骨文检测  数据集构建  YOLOv8  注意力机制  损失函数
中图分类号: TP391.41    文献标识码: A
Research on Handwritten Oracle Bone Inscriptions Detection Method in Literature Based on Bi-Level Routing Attention
SHI Zhan1, LI Jian1, YANG Jun1, TANG Pei1, WANG Yongshan1, WANG Shuai2
(1.School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi’an 710021, China;
2.School of History and Culture, Shaanxi Normal University, Xi’an 710062, China)
221612161@sust.edu.com; lijianjsj@sust.edu.cn; 211612101@sust.edu.cn; 221611058@sust.edu.cn; lswx0925@gmail.com; 447561195@qq.com
Abstract: To address issues such as the lack of datasets and the small relative size of targets in handwritten oracle bone inscriptions detection in historical literature, this study constructs the first detection dataset for handwritten oracle bone inscriptions in literature. Based on YOLOv8, a detection method named YOLO-SA is proposed, incorporating b-i level routing attention. This approach first employs sliding window cropping to increase the relative size of targets. Subsequently, a b-i level routing attention module is introduced to enhance the model’s ability to extract effective features from oracle bone inscriptions. Finally, the original loss function is replaced with the SIoU loss function to improve detection accuracy for small targets.Experimental results demonstrate that YOLO-SA achieves a precision of 90.2% and a recall of 92.3% on the custom dataset,representing improvements of 17.9% and 17.7% over baseline methods, respectively. This validates the practicality of the sel-f built dataset and the effectiveness of the proposed method.
Keywords: literature images  oracle bone detection  dataset construction  YOLOv8  attention mechanism  loss function


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫