• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:左官芳,黄涛,沙彦佑,夏宇辰.基于BST-YOLOv8的PCB缺陷检测方法[J].软件工程,2025,28(6):40-45.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于BST-YOLOv8的PCB缺陷检测方法
左官芳1,2,黄涛1,沙彦佑1,夏宇辰1
(1.南京信息工程大学电子与信息工程学院,江苏 南京 210044;
2.无锡学院电子信息工程学院,江苏 无锡 214105)
zgf@cwxu.edu.cn; 597912118@qq.com; 1819735834@qq.com; 3239248402@qq.com
摘 要: 针对现有的PCB板缺陷检测方法存在参数量大、精确度较低等问题,提出了一种改进的 YOLOv8缺陷检测与识别方法。首先,对BiFPN双向特征金字塔网络进行改进,在BiFPN的基础上整合P2特征层强化对小型缺陷目标的检测能力,并优化网络连接结构以适配 YOLOv8主干网络;并添加接近无参注意力 TA(TokenAttention)提高模型识别准确度。其次,设计全新的CSC(Channel-SpatialCompression)模块代替Backbone的C2f模块,减少模型参数冗余。最后,将模型均值平均精度提升至98.9%。在PKU-Market-PCB数据集上的实验结果表明,与原算法相比,改进算法的mAP 提升了3.2%,在PCB缺陷检测任务中展现出显著优势。
关键词: 机器视觉  YOLOv8算法  小目标检测  多尺度  缺陷检测
中图分类号: TP391.4    文献标识码: A
PCB Defect Detection Method Based on BST-YOLOv8
ZUO Guanfang1,2, HUANG Tao1, SHA Yanyou1, XIA Yuchen1
(1.School of Electronics and Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China;
2.School of Electronic Information Engineering, Wuxi University, Wuxi 214105, China)
zgf@cwxu.edu.cn; 597912118@qq.com; 1819735834@qq.com; 3239248402@qq.com
Abstract: To address the issues of large parameter size and low accuracy in existing PCB defect detection methods, this paper proposes an improved YOLOv8-based defect detection and recognition approach. The Bidirectional Feature Pyramid Network (BiFPN) is enhanced by integrating the P2 feature layer to improve the detection accuracy of small objects, and the network connections are modified to better suit the YOLOv8 architecture. Additionally, a nearly paramete-r free Token Attention (TA) mechanism is incorporated to boost model recognition accuracy. Furthermore, a novel CSC module is designed to replace the C2f module in the Backbone, reducing parameter redundancy and enabling faster and more precise target localization. Evaluations on the PKU-Marke-t PCB dataset show that the improved algorithm achieves a 3.2% increase in mean Average Precision (mAP) compared to the original method,demonstrating significant effectiveness in PCB defect detection.
Keywords: machine vision  YOLOv8 algorithm  small object detection  mult-i scale  defect detection


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫