• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:王会琴,钱松荣.改进 YOLOv8的交通监控车辆检测算法[J].软件工程,2025,28(6):30-33.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
改进 YOLOv8的交通监控车辆检测算法
王会琴,钱松荣
(贵州大学省部共建公共大数据国家重点实验室,贵州 贵阳 550025)
wanghq_gzu@163.com; qiansongr_gzu@163.com
摘 要: 为解决复杂交通监控场景下车辆检测精度不足的问题,提出基于 YOLOv8模型改进的CDS-YOLOv8车辆检测算法。首先,在特征融合部分采用轻量化的CCFM,降低了模型参数和计算量,增强模型对于尺度变化的适应性。其次,采用配备多种注意力机制的 DyHead检测头,以增强在复杂背景中识别低分辨率目标的性能。最后,结合SAConv模块提高显著区域的表示能力。实验结果表明,在智能交通数据集上,相较于原始 YOLOv8模型,CDS-YOLOv8的精度、召回率和mAP分别提高了3%、5.7%和5.1%,展现出较强的实用性。
关键词: YOLOv8  车辆检测  注意力机制
中图分类号: TP183    文献标识码: A
Improving Traffic Surveillance Vehicle Detection Algorithm for YOLOv8
WANG Huiqin, QIAN Songrong
(State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China)
wanghq_gzu@163.com; qiansongr_gzu@163.com
Abstract: To address the issue of insufficient vehicle detection accuracy in complex traffic surveillance scenarios,a vehicle detection algorithm named CDS-YOLOv8 is proposed based on the YOLOv8 model. Firstly, a lightweight CCFM is adopted in the feature fusion part to reduce the number of model parameters and computational load, enhancing the model’s adaptability to scale changes. Secondly, a DyHead detection head equipped with various attention mechanisms is used to improve the performance of recognizing low-resolution targets in complex backgrounds. Lastly, the SAConv module is combined to enhance the representation ability of salient regions.Experimental results show that, compared to the original YOLOv8, CDS-YOLOv8 has increased precision, recall, and mAP by 3% , 5.7% , and 5.1% respectively on intelligent traffic datasets, demonstrating strong practicality
Keywords: YOLOv8  vehicle detection  attention mechanism


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫