• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:贾建辉,向忠.基于改进RT-DETR的钢材表面缺陷检测算法[J].软件工程,2025,28(12):39-44.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于改进RT-DETR的钢材表面缺陷检测算法
贾建辉1,向忠1,2
(1.浙江理工大学信息科学与工程学院,浙江 杭州 310000;
2.浙江理工大学机械工程学院,浙江 杭州 310000)
jh77cf77@163.com; xz@zstu.edu.cn
摘 要: 为解决钢材表面缺陷检测中漏检和误检问题,提出一种改进RT-DETR的钢材表面缺陷检测算法。首先,使用双域边缘增强模块DDEEM(Dual Domain Edge Enhancement Module)在时域和频域提取特征;其次,采用高效多尺度注意力机制(Efficient Multi-Scale Attention)捕捉多尺度空间信息;最后,使用基于辅助边框的损失函数(Inner_IoU)更准确地评估边界框重叠区域。实验结果显示,在GC10-DET和NEU-DET数据集上,相较于原始RT-DETR-r18,改进算法的平均精度均值mAP@0.5分别提升2.2个百分点和3.9个百分点。以上结果验证了所提改进策略的有效性,为未来钢铁产业的高度智能化提供了技术支撑。
关键词: 缺陷检测  深度学习  特征融合  损失函数  RT-DETR
中图分类号:     文献标识码: A
基金项目: 中共甘肃省委宣传部2023年农村电影公益放映第三方监测服务项目(2023zfcg00315)
Steel Surface Defect Detection Algorithm Based on Improved RT-DETR
JIA Jianhui1, XIANG Zhong1,2
(1.School of Information Science and Engineering, Zhejiang Sc-i Tech University, Hangzhou 310000, China;
2.School of Mechanical Engineering, Zhejiang Sc-i Tech University, Hangzhou 310000, China)
jh77cf77@163.com; xz@zstu.edu.cn
Abstract: To address the issues of missed and false detections in steel surface defect detection, this paper proposes an improved RT-DETR-based steel surface defect detection algorithm. First, a Dual Domain Edge Enhancement Module(DDEEM)is used to extract features in both the time and frequency domains. Second, an Efficient Mult-i Scale Attention mechanism is employed to capture mult-i scale spatial information. Finally, an auxiliary bounding box-based loss function (Inner _ IoU) is utilized to more accurately evaluate the overlapping regions of bounding boxes. Experimental results show that on the GC10-DET and NEU-DET datasets, compared to the original RT-DETR-r18,the improved algorithm achieves increases of 2. 2 percentage points and 3. 9 percentage points, respectively, in mean Average Precision (mAP @ 0.5). These results demonstrate the effectiveness of the proposed improvement strategies and provide technical support for the future high-level intelligence of the steel industry
Keywords: defect detection  deep learning  feature fusion  loss function  RT-DETR


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫