• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:孙文赟,朱逸凡.基于多尺度特征结合的轻量化小目标检测算法[J].软件工程,2025,28(12):34-38.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于多尺度特征结合的轻量化小目标检测算法
孙文赟,朱逸凡
(南京信息工程大学人工智能学院,江苏 南京 210044)
wenyunsun@nuist.edu.cn; 202312490767@nuist.edu.cn
摘 要: 针对现有小目标检测中的模型过大导致实时工作能力不足的问题,提出一种基于多尺度特征结合的轻量化小目标检测算法 GBF-YOLO(Global-localBiFPNFusionYOLO)。首先,引入改进高效多尺度卷积模块(Efficient Multi-Scale Convolution Plus,EMSCP),提取多尺度特征信息;其次,提出双向特征金字塔网络BiFPN GLSA并替换原颈部网络,减少位置信息的丢失;最后,使用了Soft-NMS优化相邻检测目标的保留判断。实验结果表明,本文算法相较于原模型,参数量和计算量分别减少了34.5%和15.7%,mAP@0.5相较于YOLOv8n提升了12.1个百分点,能够在实现模型轻量化的同时有效提升小目标图像检测性能。
关键词: 小目标检测  BiFPN  特征融合  EMSCP
中图分类号:     文献标识码: A
基金项目: 中共甘肃省委宣传部2023年农村电影公益放映第三方监测服务项目(2023zfcg00315)
Lightweight Small Object Detection Algorithm Based on Multi-Scale Feature Fusion
SUN Wenyun,ZHU Yifan
(School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China)
wenyunsun@nuist.edu.cn; 202312490767@nuist.edu.cn
Abstract: To address the issue of insufficient rea-l time performance caused by excessively large models in existing small object detection methods, a lightweight small object detection algorithm named GBF-YOLO (Global-local BiFPN Fusion YOLO) based on mult-i scale feature fusion is proposed. Firstly, an improved Efficient Mult-i Scale Convolution Plus(EMSCP) is introduced to extract multi-scale feature information. Secondly, a Bidirectional Feature Pyramid Network-Global to Local Spatial Aggregation Module (BiFPN-GLSA) is proposed to replace the original neck network, reducing the loss of positional information. Finally, Sof-t NMS is employed to optimize the retention judgment of adjacent detected objects. Experimental results demonstrate that the proposed algorithm reduces the number of parameters and computational cost by 34.5% and 15.7% , respectively, compared to the original model. Meanwhile, the mAP@0.5 is improved by 12.1 percentage points compared to YOLOv8n. The algorithm effectively enhances the detection performance for small object images while achieving model lightweighting.
Keywords: small object detection  BiFPN  feature fusion  EMSCP


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫