• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:周培姚,胡志奎,张大伟,资康莉.一种基于对比学习和大模型的双阶段事件抽取方法[J].软件工程,2025,28(12):6-10.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
一种基于对比学习和大模型的双阶段事件抽取方法
周培姚1,2,胡志奎1,2,张大伟2,资康莉2
(1.江苏科技大学计算机学院,江苏 镇江 212000;
2.中国科学院计算技术研究所智能信息处理重点实验室,北京 100190)
zpy1690934380@163.com; h3hzz@outlook.com; zhangdawei_just@126.com; czikangli@126.com
摘 要: 文档级事件抽取作为信息抽取领域的一项颇具挑战性任务,其关键在于如何精确识别并抽取文档中蕴含的多个事件信息。针对这一难题,提出了一种双阶段事件抽取方法。在事件类型检测阶段,将问题转化为基于对比学习的多标签分类任务,并通过创新性的事件子空间的动态负例选择策略,有效增强了不同类型事件之间的区分度。在事件论元抽取阶段,利用大模型进行多阶段推理,完成事件论元的识别。实验结果表明,所提方法F1值提升了0.6个百分点,验证了本文方法的有效性和可行性。
关键词: 对比学习  大语言模型  事件抽取
中图分类号:     文献标识码: A
基金项目: 新疆维吾尔自治区高校科研基金资助项目(XJEDU2024094)
A Two-Stage Event Extraction Method Based on Contrastive Learning and Large Language Models
ZHOU Peiyao1,2, HU Zhikui1,2, ZHANG Dawei2, ZI Kangli2
(1.School of Computer, Jiangsu University of Science and Technology, Zhenjiang 212000, China;
2.Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China)
zpy1690934380@163.com; h3hzz@outlook.com; zhangdawei_just@126.com; czikangli@126.com
Abstract: Documen-t level event extraction, as a challenging task in the field of information extraction, hinges on the accurate identification and extraction of multiple even-t related pieces of information within a document. To address this challenge, this paper proposes a two-stage event extraction method. In the event type detection stage, the problem is transformed into a mult-i label classification task based on contrastive learning. By innovatively employing a dynamic negative sampling strategy within event subspaces, the distinction between different event types is significantly enhanced. In the event argument extraction stage, large language models are utilized for mult-i step reasoning to identify event arguments. Experimental results demonstrate that the proposed method achieves a 0.6 percentage points improvement in F1-score, verifying its effectiveness and feasibility.
Keywords: contrastive learning  Large Language Model  event extraction


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫