• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:邓治文,张龙健,李锦辉,魏其武.基于双通道和注意力机制的多特征融合的文本情感分类模型[J].软件工程,2025,28(12):1-5.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于双通道和注意力机制的多特征融合的文本情感分类模型
邓治文1,张龙健1,李锦辉1,魏其武2
(1.新疆科技学院基础教学研究部,新疆 巴音郭楞蒙古自治州 841000;
2.新疆科技学院文化与传媒学院,新疆 巴音郭楞蒙古自治州 841000)
965213513@qq.com; 394463995@qq.com; 1187357069@qq.com; 1300130705@qq.com
摘 要: 针对单一模型在文本分类时难以捕捉丰富语义信息的问题,提出了一种基于双通道和注意力机制的多特征融合的文本情感分类模型(MFF-DCAM)。首先,利用BERT-WWM-EXT获取文本词向量;其次,分别使用多尺度卷积神经网络和双向长短期记忆网络提取局部特征和上下文特征;再次,拼接两个特征并使用注意力机制对该特征加权;然后,使用全局平均池化突出句子整体信息;最后,使用Softmax函数进行分类。实验结果表明,MFF-DCAM模型的准确率、精确率和F1值优于8个基准模型,验证了该模型在提升文本情感分类方面的有效性。
关键词: 双通道  注意力机制  BiLSTM模型  Text-CNN模型
中图分类号:     文献标识码: A
基金项目: 新疆维吾尔自治区高校科研基金资助项目(XJEDU2024094)
A Multi-Feature Fusion of Dual-Channel and Attention Mechanism for Text Sentiment Classification Model
DENG Zhiwen1, ZHANG Longjian1, LI Jinhui1, WEI Qiwu2
(1.Basic Teaching Research Department, Xinjiang College of Science & Technology, Bayingolian Mongolian Autonomous Prefecture 841000, China;
2.College of Culture and Media, Xinjiang College of Science & Technology, Bayingolian Mongolian Autonomous Prefecture 841000, China)
965213513@qq.com; 394463995@qq.com; 1187357069@qq.com; 1300130705@qq.com
Abstract: To address the challenge of capturing rich semantic information with single models in text classification, this paper proposes a Mult-i Feature Fusion of Dua-l Channel and Attention Mechanism for Text Sentiment Classification Model (MFF-DCAM). First, BERT-WWM-EXT is employed to obtain text word vectors.Second, mult-i scale convolutional neural networks and bidirectional long shor-t term memory networks are used to extract local features and contextual features, respectively. Then, the two features are concatenated and weighted using an attention mechanism. Next, global average pooling is applied to highlight the overall sentence information. Finally,the Softmax function is used for classification. Experimental results demonstrate that the MFF-DCAM model outperforms eight baseline models in accuracy, precision, and F1-score, validating the effectiveness of this model in enhancing text sentiment classification.
Keywords: dual channel  attention mechanism  BiLSTM model  Tex-t CNN model


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫