• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:李申阳,喻 恒,邓文帅,陈晓行,杨 宸.基于深度学习的电力巡检目标检测与追踪研究[J].软件工程,2024,27(10):39-42.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于深度学习的电力巡检目标检测与追踪研究
李申阳, 喻 恒, 邓文帅, 陈晓行, 杨 宸
(平顶山学院信息工程学院, 河南 平顶山 467000)
lsy373@163.com; 2540@pdsu.edu.cn; shuaidyb@gmail.com; 1485317034@qq.com; 1790867636@qq.com
摘 要: 随着我国电力行业的飞速发展,传统的人工电力巡检方式已无法满足当前行业的发展需求。文章提出一种基于深度学习的电力巡检目标检测与追踪模型。该模型通过在YOLOv7中引入CBAM(Convolutional Block Attention Module)注意力模块,构建了CBAM-YOLOv7改进检测算法,并将其识别结果作为DeepSORT(Simple Online and Realtime Tracking With A Deep Association Metric)目标追踪算法的输入,实现了对电网故障的有效检测与追踪。实验结果表明,相较于原YOLOv7算法,改进后的CBAM-YOLOv7算法在精确度、召回率、平均精度3个评价指标上均有提升,而DeepSORT算法的平均MOTA值也达到87.817%。这证明了该模型能够在真实复杂场景下准确地定位电网故障。
关键词: 电力巡检;深度学习;YOLOv7;CBAM;DeepSORT
中图分类号: TP391.4    文献标识码: A
基金项目: 河南省大学生创新创业训练项目(202310919011)
Research on Power Inspection Target Detection and Tracking Based on Deep Learning
LI Shenyang, YU Heng, DENG Wenshuai, CHEN Xiaohang, YANG Chen
(School of In f ormation Engineering, PingDingShan University, Pingdingshan 467000, China)
lsy373@163.com; 2540@pdsu.edu.cn; shuaidyb@gmail.com; 1485317034@qq.com; 1790867636@qq.com
Abstract: With the rapid development of the power industry in China, traditional manual power inspection methods can no longer meet the current industry demands. This paper proposes a deep learning-based model for object detection and tracking in power inspection. The model introduces the CBAM (Convolutional Block Attention Module) attention mechanism into YOLOv7, creating an improved detection algorithm called CBAM-YOLOv7. The detection results from this model are used as input for the DeepSORT (Simple Online and Realtime Tracking With A Deep Association Metric) tracking algorithm, achieving effective detection and tracking of power grid faults. Experimental results indicate that compared to the original YOLOv7 algorithm, the improved CBAM-YOLOv7 algorithm shows enhancements in precision, recall, and mean average precision metrics, while the DeepSORT algorithm achieves an average MOTA value of 87.817% . It is proved that the model can accurately locate power grid faults in real complex scenarios.
Keywords: power inspection; deep learning; YOLOv7; CBAM; DeepSORT


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫