| 摘 要: 针对菌落计数问题,人工计数方法存在效率低、精度不高的问题。为了解决这些问题,提出了一种改进YOLOv5的模型,即YOLOES。该模型通过添加小目标检测层,并将Kmeans算法替换为Kmeans++算法,以更好地适应不同尺寸的目标;同时,采用Focal-EIoU损失函数解决难易样本的问题,引入了SPPCSPS(Spatial Pyramid Pooling Convolutional Spatial Pyramid Convolution)模块以增强特征表示能力,并在特征提取阶段引入了置换注意力机制。通过在大肠杆菌菌落数据集进行实验验证,结果显示相较于初始的YOLOv5模型,YOLOES的mAP@0.5提升了17.3百分点,表明YOLOES在菌落检测任务上具有更优越的性能。 | 
			
	         
				| 关键词: YOLOv5  图像识别  Kmeans++  Focal-EIoU  SPPCSPS  置换注意力机制 | 
		
			 
                     
			
                | 中图分类号: TP391
			 
		
                  文献标识码: A | 
		
	   
            
                | 基金项目: 浙江省高层次人才特殊支持计划(2021R52019) | 
	     
          |  | 
           
                | Research on Colony Counting Algorithm Based on Improved YOLOv5 | 
           
			
                | FAN Xiangyu, DAI Qi | 
           
		   
                | (College of Li f e Sciences and Medicine, Zhejiang SCI-TECH University, Hangzhou 310020, China) 1871541711@qq.com; daiqi@zstu.edu.cn
 | 
             
                | Abstract: Aiming at the low efficiency and low accuracy of manual colony counting, this paper proposes an improved model based on YOLOv5, named YOLOES. This model incorporates a small object detection layer and replaces the Kmeans algorithm with the Kmeans + + algorithm to better accommodate targets of various sizes. Additionally, it employs the Focal-EIoU loss function to tackle the problem of hard and easy samples, introduces the SPPCSPS ( Spatial Pyramid Pooling Convolutional Spatial Pyramid Convolution ) module to enhance feature representation capability, and integrates a permutation attention mechanism in the feature extraction phase. Experiments conducted on a dataset of Escherichia coli colonies indicate that YOLOES achieves a 17.3 percentage points improvement in mAP@0.5 compared to the original YOLOv5 model, demonstrating its superior performance in colony detection tasks. | 
	       
                | Keywords: YOLOv5  image recognition  Kmeans++  Foca-l EIoU  SPPCSPS  permutation attention mechanisms |