• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:王源焕,杨羊,郭亮.持续集成测试优化中的自适应动态划分机制研究[J].软件工程,2025,28(12):65-71.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
持续集成测试优化中的自适应动态划分机制研究
王源焕,杨羊,郭亮
(浙江理工大学信息科学与工程学院,浙江 杭州 310018)
202230705158@mails.zstu.edu.cn; yangyang0070@zstu.edu.cn; lguo@zstu.edu.cn
摘 要: 在持续集成环境下,针对大多数测试用例的优先排序方法难以有效选择和利用历史信息的问题,提出了一种基于历史信息的自适应动态划分机制(ADPM)。首先,该机制为测试用例分配若干动态信息块,并根据测试用例潜在失效影响动态划分历史信息,实现测试用例潜在失效能力的度量,并以此生成历史信息动态特征;其次,结合轻量级深度学习框架预测测试用例优先级,调整测试用例执行顺序。为验证ADPM方法的有效性,在3个工业数据集上进行了实验,采用归一化平均故障检测百分比(NAPFD)作为主要评价指标。实验结果表明,使用ADPM后,测试用例序列的 NAPFD较使用固定长度历史信息平均增长了10个百分点。
关键词: 持续集成  回归测试  测试用例优先排序  历史信息选择  深度学习
中图分类号:     文献标识码: A
基金项目: 国家自然科学基金资助项目(61663005)
Research on Adaptive Dynamic Partitioning Mechanismin Continuous Integration Test Optimization
WANG Yuanhuan, YANG Yang, GUO Liang
(School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China)
202230705158@mails.zstu.edu.cn; yangyang0070@zstu.edu.cn; lguo@zstu.edu.cn
Abstract: In the context of continuous integration, addressing the challenge that most test case prioritization methods struggle to effectively select and utilize historical information, an Adaptive Dynamic Partitioning Mechanism(ADPM) based on historical information is proposed. Firstly, this mechanism allocates several dynamic information blocks to test cases and dynamically partitions historical information based on the potential failure impact of test cases.This enables the measurement of the potential failure capability of test cases, thereby generating dynamic features of historical information. Secondly, the priority of test cases is predicted by integrating a lightweight deep learning framework, and the execution order of test cases is adjusted accordingly. To validate the effectiveness of the ADPM method, experiments were conducted on three industrial datasets, using the Normalized Average Percentage of Faults Detected (NAPFD) as the primary evaluation metric. The experimental results show that after applying ADPM, the NAPFD of the test case sequence increases by an average of 10 percentage points compared to using fixed-length historical information.
Keywords: continuous integration  regression testing  test case prioritization  historical information selection  deep learning


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫