• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:章黎黎,徐鸣,马龙华,田冠中.基于改进SuperPoint与多尺度融合的视觉SLAM闭环检测算法[J].软件工程,2025,28(12):49-53.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于改进SuperPoint与多尺度融合的视觉SLAM闭环检测算法
章黎黎1,徐鸣1,2,马龙华2,田冠中3
(1.浙江理工大学信息科学与工程学院,浙江 杭州 310018;
2.浙大宁波理工学院信息科学与工程学院,浙江 宁波 315199;
3.浙江大学宁波国际科创中心,浙江 宁波 315199)
lilizhang032@163.com; photoman2004@126.com; lhma_zju@zju.edu.cn; gztian@zju.edu.cn
摘 要: 传统闭环检测算法采用人工设计特征,准确性差且特征提取耗时,难以满足实时性需求。因此,提出了一种基于改进Super Point与多尺度描述符融合的视觉同时定位与建图 SLAM(Simultaneous Localization And Mapping)闭环检测算法,旨在提高系统的准确性并满足实时性需求。该算法引入残差结构替代原卷积结构,同时融合了多尺度特征融合策略,最后通过Light Glue网络进行特征匹配,利用New College数据集对算法进行验证。在准确率为100%的情况下,改进算法的最大召回率在左右两个数据集上分别能达到36.4%和34.8%,满足闭环检测需求。
关键词: 闭环检测  特征提取  多尺度特征融合  特征匹配
中图分类号:     文献标识码: A
基金项目: 国家自然科学基金资助项目(61663005)
Visual SLAM Loop Closure Detection Algorithm Based on Improved Super Point and Multi-Scale Fusion
ZHANG Lili1, XU Ming1,2, MA Longhua2, TIAN Guanzhong3
(1.School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
2.School of Information Science and Engineering, Ningbo Tech University, Ningbo 315199, China;
3.Ningbo Global Innovation Center Zhejiang University, Ningbo 315199, China)
lilizhang032@163.com; photoman2004@126.com; lhma_zju@zju.edu.cn; gztian@zju.edu.cn
Abstract: Traditional loop closure detection algorithms rely on handcrafted features, which are less accurate and time-consuming in feature extraction, making it difficult to meet rea-l time requirements. This paper proposes a visual (Simultaneous Localization and Mapping,SLAM)loop closure detection algorithm based on improved SuperPoint and mult-i scale descriptor fusion, aiming to enhance the system’s accuracy and meet rea-l time demands. The algorithm replaces the original convolutional structure with a residual structure and incorporates a mult-i scale feature fusion strategy. Finally, feature matching is performed using the LightGlue network. The algorithm was validated on the NewCollege dataset. At 100% precision, the improved algorithm achieves maximum recall rates of 36.4% and 34.8% on the left and right datasets, respectively, meeting the requirements for loop closure detection.
Keywords: loop closure detection  feature extraction  mult-i scale feature fusion  feature matching


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫