• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:靳泽民,宋康,汪云云.基于判别感知对比网络的领域泛化学习[J].软件工程,2025,28(12):24-27.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于判别感知对比网络的领域泛化学习
靳泽民,宋康,汪云云
(南京邮电大学计算机学院,江苏 南京 210023)
1022040814@njupt.edu.cn; 1222045613@njupt.edu.cn; wangyunyun@njupt.edu.cn
摘 要: 领域泛化旨在通过从源域学习可迁移的知识,在源域上训练后,再推广到未见过的目标领域也能良好运行。现有的对比领域泛化方法通过跨领域对齐同一类别的样本来追求领域不变特征,但忽略了类别之间的混淆。因此,学习到的模型可能缺乏区分性和鲁棒性,尤其是在领域之间存在显著差异时。为此提出了判别感知对比网络(DACA),通过增强类别和样本的区分性减少类别之间的混淆,同时保持跨领域的类内一致性。DACA在3个基准数据集上比次优的对比方法准确度平均高3.15%、0.22%、1.76%。验证了DACA在缓解类别混淆、提升特征鲁棒性方面的有效性。
关键词: 领域泛化  类别混淆  类别区分  样本区分  对比学习
中图分类号:     文献标识码: A
基金项目: 国家自然科学基金资助项目(52279069)
Domain Generalization Learning Based on Discrimination-Aware Contrastive Network
JIN Zemin, SONG Kang, WANG Yunyun
(School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)
1022040814@njupt.edu.cn; 1222045613@njupt.edu.cn; wangyunyun@njupt.edu.cn
Abstract: Domain generalization aims to learn transferable knowledge from source domains,so that the model can perform well on unseen target domains. Existing contrastive domain generalization methods pursue domain-invariant features by aligning samples of the same category across domains but overlook the confusion between categories. Consequently, the learned models may lack discriminability and robustness, especially when significant differences exist between domains. To mitigate this issue, a Discrimination-Aware ContrAstive network (DACA) is proposed, which enhances category and sample discrimination to reduce inte-r class confusion while maintaining intra-class consistency across domains. DACA achieves average accuracy improvements of 3.15% , 0.22% , and 1.76% over the second-best contrastive methods on three benchmark datasets, respectively. The results validate the effectiveness of DACA in alleviating category confusion and enhancing feature robustness.Domain generalization aims to learn transferable knowledge from source domains,so that the model can perform well on unseen target domains. Existing contrastive domain generalization methods pursue domain-invariant features by aligning samples of the same category across domains but overlook the confusion between categories. Consequently, the learned models may lack discriminability and robustness, especially when significant differences exist between domains. To mitigate this issue, a Discrimination-Aware ContrAstive network (DACA) is proposed, which enhances category and sample discrimination to reduce inte-r class confusion while maintaining intra-class consistency across domains. DACA achieves average accuracy improvements of 3.15% , 0.22% , and 1.76% over the second-best contrastive methods on three benchmark datasets, respectively. The results validate the effectiveness of DACA in alleviating category confusion and enhancing feature robustness.
Keywords: domain generalization  category confusion  category discrimination  sample discrimination  contrastive learning


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫