• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:黄志勇,黎想,张旭.基于多尺度特征的工业钢材缺陷检测算法[J].软件工程,2025,28(12):16-19.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于多尺度特征的工业钢材缺陷检测算法
黄志勇,黎想,张旭
(三峡大学计算机与信息学院,湖北 宜昌 443002)
hzy@hzy.org.cn; 1627242777@qq.com; 649359073@qq.com
摘 要: 针对工业场景中钢材缺陷检测精度以及检测效率都很低的问题,提出了一种基于 YOLOv8n改进的工业缺陷检测算法。改进算法通过在主干网络末端嵌入卷积注意力融合模块(CAFM),实现全局与局部特征的有效融合,增强网络捕捉缺陷细节特征的能力。设计基于小波变换卷积(WTConv)的C2fWT模块,以增强网络对缺陷目标的多尺度特征提取能力。提出Shape-IoU损失函数以更加关注缺陷目标的形状与尺寸因素,改善缺陷边界框的回归效果。实验结果表明,与基准模型相比,改进算法平均精度提升了3.3%,计算量降低了6.2%,在精度与效率之间取得了较好平衡,具有重要的工业应用价值。
关键词: 缺陷检测  卷积注意力  小波变换  多尺度特征
中图分类号:     文献标识码: A
基金项目: 国家自然科学基金资助项目(52279069)
Industrial Steel Defect Detection Algorithm Based on Multi-Scale Features
HUANG Zhiyong, LI Xiang, ZHANG Xu
(College of Computer and Information Technology, China Three Gorges University, Yichang 443002, China)
hzy@hzy.org.cn; 1627242777@qq.com; 649359073@qq.com
Abstract: To address issues such as low accuracy and inefficiency in steel defect detection in industrial scenarios,an improved industrial defect detection algorithm based on YOLOv8n is proposed. The improved algorithm embeds a Convolutional Attention Fusion Module (CAFM) at the end of the backbone network to achieve effective fusion of global and local features, enhancing the network’s ability to capture detailed defect characteristics. A C2fWT module based on Wavelet Transform Convolution (WTConv) is designed to strengthen the network’s Mult-i Scale Feature extraction capability for defect targets. Additionally, the Shape-IoU loss function is introduced to place greater emphasis on the shape and size factors of defect targets, thereby improving the regression performance of defect bounding boxes. Experimental results demonstrate that, compared to the baseline model, the improved algorithm achieves a 3.3% increase in average precision and a 6.2% reduction in computational load, striking a favorable balance between efficiency and accuracy. This advancement holds significant industrial application value.
Keywords: defect detection  convolutional attention  wavelet transform  Multi-Scale Features


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫