• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于图检索增强生成技术的面向离散生产的客诉智能问答系统设计
蔡家俊, 鲍 敏
浙江理工大学
摘 要: 针对离散生产客诉服务中技术文档非结构化、业务数据割裂以及大模型在该领域易产生“幻觉”的问题,设计了基于图检索增强生成的智能问答系统。提出了面向质量追溯系统的生产缺陷知识图谱与领域知识库构建方法,并融合Leiden社区检测算法与混合检索策略,增强了问答系统的准确性与可解释性。实验采用某轴承企业的售后历史数据验证,在RAGAs评估框架中较通用GraphRAG方法综合得分提升了8.60分,验证了其在专业领域知识抽取、组织与应用方面的可行性与实用性。
关键词: 离散生产  领域知识库  图检索增强  大模型
中图分类号: TH186;TP18    文献标识码: 
Graph Retrieval-Augmented Generation for Intelligent Customer Complaint Question-Answering System in Discrete Manufacturing
CAI Jiajun, BAO Min
Zhejiang Sci-Tech University
Abstract: Addressing the challenges of unstructured technical documents, fragmented business data, and the susceptibility of large language models to 'hallucinations' in discrete manufacturing customer-complaint services, this paper designs an intelligent question-answering system based on graph retrieval-augmented generation. It proposes construction methods for a production-defect knowledge graph and a domain knowledge base tailored to quality-traceability systems, and integrates the Leiden community detection algorithm with a hybrid retrieval strategy to enhance the system’s accuracy and interpretability. Experiments conducted on after-sales historical data from a bearing manufacturer demonstrate an 8.60-point increase in the overall RAGAs evaluation score compared with the general GraphRAG method, validating the system’s feasibility and practicality in domain-specific knowledge extraction, organization, and application.
Keywords: Discrete Manufacturing  Domain Knowledge Base  Graph Retrieval-Augmented Generation  Large Language Model


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫