• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于检索增强生成的心肌病大模型临床辅助诊断研究
杨昌吉1, 张选德1, 贺惠新2, 刘婕3,3, 段岩峰4, 黄鑫5
1.陕西科技大学电子信息与人工智能学院;2.华侨大学计算机科学与技术学院;3.中国医学科学院阜外医院;4.中关村熙睿心脑肿瘤精准医疗研究院;5.宁波大学信息科学与工程学院
摘 要: 本研究针对心肌病诊断“多源信息过载”“知识更新滞后”及传统大模型“幻觉频发”等痛点,提出基于检索增强生成(RAG)的辅助诊断系统。以阜外医院2024年642份含5类心肌病分型的临床报告为数据集,整合国际指南、权威文献构建知识库,通过多阶段混合检索与精准提示工程关联患者信息与权威知识。实验显示,该系统在心脏超声(93.5%, 0.93)、核磁共振报告(87.2%, 0.87)诊断准确率和F1分数上显著优于主流模型,证实RAG架构有效性,为智能辅助诊断系统发展提供支撑。
关键词: 大语言模型  检索增强生成  心肌病  辅助诊断  临床决策支持
中图分类号: TP391    文献标识码: 
基金项目: 福建省自然科学基金项目(2023J01138)、宁波大学One health交叉学科研究项目(HY202409)
Research on Clinical Auxiliary Diagnosis of Cardiomyopathy Using Retrieval-Augmented Large Language Models
Yang ChangJi1, Zhang XuanDe1, He HuiXin2, Liu Jie3, Duan YanFeng4, Huang Xin5
1.School of Electronic Information and Artificial Intelligence, ShaanxiSUniversitySofSScienceS STechnology;2.School of Computer Science and Technology, Huaqiao University;3.FUWAI Hospital, CAMS PUMC;4.Zhongguancun Xirui Institute for Precision Study of Heart, Brain and Tumor;5.School of Information Science and Engineering, Ningbo University
Abstract: This study addresses the pain points of cardiomyopathy diagnosis, such as "multisource information overload," "lagging knowledge updates," and the frequent "hallucinations" of traditional large language models, by proposing a retrieval-augmented generation (RAG)-based auxiliary diagnosis system. Using a dataset of 642 clinical reports from Fuwai Hospital in 2024, which includes five types of cardiomyopathy classifications, the study integrates international guidelines and authoritative literature to build a knowledge base. It then links patient information with authoritative knowledge through multi-stage hybrid retrieval and precise prompt engineering. Experimental results show that the system significantly outperforms mainstream models in diagnostic accuracy and F1 score on echocardiography reports (93.5%, 0.93) and cardiac magnetic resonance (MRI) reports (87.2%, 0.87). This confirms the effectiveness of the RAG architecture and provides support for the development of intelligent auxiliary diagnosis systems.
Keywords: Large  Language Models, Retrieval-Augmented  Generation, Cardiomyopathy, Auxiliary  Diagnosis, Clinical  Decision Support


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫