• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:张艳强,姚斌,王梅嘉.基于YOLOv8的头盔佩戴检测方法[J].软件工程,2025,28(6):55-59.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于YOLOv8的头盔佩戴检测方法
张艳强,姚斌,王梅嘉
(陕西科技大学电子信息与人工智能学院,陕西 西安 710021)
z13720917730@163.com; yaobin@sust.edu.cn; 4672@sust.edu.cn
摘 要: 针对当前电动车头盔佩戴检测在密集场景下误检率高、小目标检测的漏检率高、模型体积大等问题,提出了改进的YOLOv8头盔佩戴检测方法。首先,使用轻量化卷积模块替换主干网络中的常规卷积,降低网络的参数量。其次,增加一个检测层,用来提高网络对小目标的检测能力;在Neck部分,使用基于DCNv3改进的C2f_DCN模块,并融入EMA注意力机制。最后,采用Inner-MPDIoU(Inner Multi-Point Distance Intersection over Union)损失函数代替了原来的损失函数,用于改善边界框纵横比的收敛速度。实验结果显示,改进后的模型在公开数据集上的mAP@0.5达到了88.9%,相较于基准模型YOLOv8提高了5.4%,并且模型的体积压缩至原来的36.6%,更加适用于实际交通场景中的部署需求与应用场景。
关键词: YOLOv8  头盔检测  注意力机制  轻量化
中图分类号: TP391    文献标识码: A
基金项目: 陕西省自然科学基础研究计划(2022JQ-175),陕西省教育厅专项科研计划(22JK0303),陕西科技大学科研启动项目(2020BJ-18)
Helmet Wearing Detection Method Based on YOLOv8
ZHANG Yanqiang, YAO Bin, WANG Meijia
(School of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi’an, 710021, China)
z13720917730@163.com; yaobin@sust.edu.cn; 4672@sust.edu.cn
Abstract: To address issues such as high false detection rates in dense scenarios, high miss rates for smal-l target detection, and large model size in current electric vehicle helmet detection, an improved YOLOv8-based helmet detection method is proposed. Firstly, lightweight convolution modules replace standard convolutions in the backbone network to reduce parameters. Secondly, an additional detection layer is introduced to enhance smal-l target detection capability. In the neck section, a C2f_DCN module improved with DCNv3 is adopted, incorporating the EMA attention mechanism. Finally, the Inne-r MPDIoU loss function replaces the original loss function to accelerate the convergence of bounding box aspect ratios. Experimental results show that the improved model achieved an mAP@0.5 of 88.9% on public datasets, a 5.4% increase over YOLOv8. The model size is compressed to 36.6% of the original, making it more suitable for deployment in rea-l world traffic scenarios.
Keywords: YOLOv8  helmet detection  attention mechanism  lightweight


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫