• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:谭 歆,赵东岩,朱鸿熙,武 柏,张 莹.基于混合鲸鱼灰狼优化算法的三维无源时差定位技术研究[J].软件工程,2025,28(6):19-23.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于混合鲸鱼灰狼优化算法的三维无源时差定位技术研究
谭 歆1,赵东岩1,朱鸿熙2,武 柏1,张 莹1
(1.陕西科技大学电子信息与人工智能学院,陕西 西安 710021;
2.西安八阵图电子科技有限公司,陕西 西安 710199)
tanxin@sust.edu.cn; 221611048@sust.edu.cn; 271674351@qq.com; conwobo@outlook.com; 231612117@sust.edu.cn
摘 要: 针对三维无源时差定位(TDOA)非线性方程组求解中的凸优化难题,提出了一种基于混合鲸鱼灰狼优化算法(HWWOA)的解决方案。首先,通过Chan式算法优化种群初始化,增强了种群多样性。其次,改进适应度函数,消除观测站之间的差异,降低定位误差。算法策略中,结合灰狼算法和莱维飞行,提升了全局搜索能力,并通过贪婪选择策略保留最优解。仿真实验结果显示:HWWOA在近场场景下的定位正确率基本保持一致,在临界点场景下的定位准确率高达99.5%,较其他算法至少提升了15%,500次迭代内适应度值下降更快;定位误差曲线更接近克拉美罗下限(CRLB),算法鲁棒性显著提升。该算法结构简单,参数少,易于实现,具有较好的实用价值和应用前景。
关键词: 混合鲸鱼灰狼优化算法  无源时差定位  适应度函数  莱维飞行
中图分类号: TP391    文献标识码: A
基金项目: 陕西省重点研发计划项目(2020GY-091);陕西科技大学博士科研基金(2020BJ-49)
Research on 3D Passive TDOA Localization Technology Based on Hybrid Whale Grey Wolf Optimization Algorithm
TAN Xin1, ZHAO Dongyan1, ZHU Hongxi2, WU Bai1, ZHANG Ying1
(1.School of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi’an, 710021, China;
2.BZT Electronics, Xi’an, 710199, China)
tanxin@sust.edu.cn; 221611048@sust.edu.cn; 271674351@qq.com; conwobo@outlook.com; 231612117@sust.edu.cn
Abstract: To address the convex optimization challenge in solving nonlinear equations for 3D passive Time Difference of Arrival (TDOA) localization, a solution based on the Hybrid Whale Grey Wolf Optimization Algorithm (HWWOA) is proposed. Firstly, population initialization is optimized via Chan’s algorithm to enhance diversity.Secondly, the fitness function is refined to eliminate systematic errors between observation stations and reduce localization inaccuracies. Within the algorithmic framework, the integration of the Grey Wolf Optimizer (GWO) and Lévy flight bolsters global search capability, while a greedy selection strategy preserves elite solutions. Simulation results show that: HWWOA maintains basically consistent localization accuracy in nea-r field scenarios, achieves a localization accuracy of up to 99.5% in critica-l point scenarios, improves by at least 15% compared with other algorithms, and has a faster decline in fitness values within 500 iterations. The localization error curve is closer to the Cramé-r Rao Lower Bound (CRLB), and the algorithm's robustness is significantly improved. Its simple architecture, minimal parameters, and ease of implementation underscore significant practical value and promising application prospects.
Keywords: Hybrid Whale Grey Wolf Optimization Algorithm (HWWOA)  Time Difference of Arrival (TDOA)  fitness function  Lévy flight


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫