• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:陈蒋哲,张鹏伟,陈景霞,高祎亦.改进YOLOv7-tiny的钢材表面缺陷检测模型[J].软件工程,2025,28(5):32-37.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
改进YOLOv7-tiny的钢材表面缺陷检测模型
陈蒋哲,张鹏伟,陈景霞,高祎亦
(陕西科技大学电子信息与人工智能学院,陕西 西安 710021)
192988765@qq.com; zhangpengwei@sust.edu.cn; chenjingxia@sust.edu.cn; 221612167@sust.edu.cn
摘 要: 针对钢材表面缺陷检测模型普遍存在的复杂度高、检测精度低的问题,提出一种改进 YOLOv7-tiny的钢材表面缺陷检测模型,即 MDD-YOLO(Mixed Dynamic-head Deformable-YOLO)。首先,在模型的特征融合部分引入混合局部通道注意力机制(Mixed Local Channel Attention,MLCA),用于提取通道信息、空间信息、局部通道信息以及全局通道信息;其次,利用动态头部框架(Dynamic Head,Dyhead)提升模型目标检测头的表达能力;最后,在主干网络中采用可变形卷积网络(Deformable ConvNets,DCN),有效地提高了模型的特征提取能力。实验结果显示,所提模型的均值平均精度达到了80.1%,较原模型提升了4.3%,并且模型参数量仅约为6.2M,证明了所提改进方法的有效性。
关键词: 钢材表面;缺陷检测;YOLOv7-tiny;混合局部通道注意力;可变形卷积网络;动态头部框架
中图分类号: TP391    文献标识码: A
Improved Steel Surface Defect Detection Model Based on YOLOv7-tiny
CHEN Jiangzhe, ZHANG Pengwei, CHEN Jingxia, GAO Yiyi
(School of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, X'i an 710021, China)
192988765@qq.com; zhangpengwei@sust.edu.cn; chenjingxia@sust.edu.cn; 221612167@sust.edu.cn
Abstract: To address the prevalent issues of high complexity and low detection accuracy in steel surface defect detection models, this paper proposes an improved YOLOv7-tiny-based model named MDD-YOLO (Mixed Dynamichead Deformable-YOLO). Firstly, a Mixed Local Channel Attention (MLCA) mechanism is introduced into the feature fusion stage to extract channel information, spatial information, loca-l channel information, and globa-l channel information. Secondly, the Dynamic Head (DyHead) framework is integrated to enhance the expressive power of the detection heads. Finally, Deformable ConvNets (DCN) are adopted in the backbone network to significantly improve feature extraction capability. Experimental results demonstrate that the proposed model achieves a mean Average Precision (mAP) of 80.1% , representing a 4.3% improvement over the baseline, while the model has only about 6.2 M parameters, thereby validating the effectiveness of the proposed enhancements.
Keywords: steel surface; defect detection; YOLOv7-tiny; mixed local channel attention; deformable convolutional networks; dynamic head framework


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫