• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:谢志明,谷 芳.基于批归一化卷积神经网络算法的图像分类识别方法研究[J].软件工程,2025,28(5):21-26.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于批归一化卷积神经网络算法的图像分类识别方法研究
谢志明1,2,谷 芳1,2
(1.汕尾职业技术学院工程学院,广东 汕尾 516600;
2.汕尾市创新工业设计研究院,广东 汕尾 516600)
106710856@qq.com; 505665578@qq.com
摘 要: 为解决传统神经网络在CIFAR-10(Canadian Institute For Advanced Research)数据集上进行图像分类识别时,存在的模型准确率较低和训练过程易发生过拟合现象等问题,提出了一种将卷积神经网络和批归一化相结合的新神经网络结构构建方法。该方法首先对数据集进行数据增强和边界填充处理,其次对典型的 CNN(Convolutonal Neural Networks)网络结构进行改进,移除了卷积层组中的池化层,仅保留了卷积层和BN(Batch Normalization)层,并适量增加卷积层组。为了验证模型的有效性和准确性,设计了6组不同的神经网络结构对模型进行训练。实验结果表明,在相同训练周期数下,推荐使用的 model-6模型表现最佳,测试准确率高达90.17%,突破了长期以来经典CNN在CIFAR-10数据集上难于达到90%准确率的瓶颈,为图像分类识别提供了新的解决方案和模型参考。
关键词: 图像分类识别;卷积神经网络;批归一化;数据增强;边界填充
中图分类号: TP391.4    文献标识码: A
基金项目: 广东省普通高校重点领域专项“基于GAN人脸超分辨率恢复关键技术的研究”(2021ZDZX1101);广东省教育科学规划课题高等教育科学研究专题“基于‘岗课赛证’融通的专业群课程体系建构与特色发展研究”(2023GXJK948)
Research on Image Classification and Recognition Method Based on BatchNormalization Convolutional Neural Network Algorithm
XIE Zhiming1,2 , GU Fang1,2
(1.School of Engineering, Shanwei Institute of Technology, Shanwei 516600, China;
2.Shanwei Innovation Industrial Design and Research Institute, Shanwei 516600, China)
106710856@qq.com; 505665578@qq.com
Abstract: To address the issues of low model accuracy and frequent overfitting during training when traditional neural networks perform image classification and recognition on the CIFAR-10 (Canadian Institute For Advanced Research) dataset, this paper proposes a novel neural network architecture construction method combining Convolutional Neural Networks (CNNs) with Batch Normalization (BN). The method first applies data augmentation and boundary padding to preprocess the dataset, then modifies the conventional CNN architecture by removing pooling layers from convolutional layer groups while retaining convolutional layers and BN layers, with appropriate increases in convolutional layer depth. To validate the effectiveness and accuracy of the model, six distinct neural network architectures are designed for comparative training experiments. Experimental results demonstrate that under identical training epochs, the recommended Mode-l 6 achieves optimal performance with a test accuracy of 90.17% , breaking through the long-standing bottleneck where classical CNNs struggled to exceed 90% accuracy on the CIFAR-10 dataset. This provides new solutions and model references for image classification and recognition tasks.
Keywords: image classification and recognition; Convolutional Neural Network (CNN); Batch Normalization (BN); data augmentation; boundary padding


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫