• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:文 韬,王天一.基于改进 YOLOv8n的玉米地杂草检测[J].软件工程,2025,(3):6-10.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于改进 YOLOv8n的玉米地杂草检测
文 韬,王天一
(贵州大学大数据与信息工程学院,贵州 贵阳 550025)
1815714855@qq.com; tywang@gzu.edu.cn
摘 要: 为了有效应对玉米地杂草对玉米产量和品质的影响,实现玉米与杂草的快速、准确检测,提出了一种基于改进YOLOv8n(You Only Look Once Version 8 nano)的玉米与杂草检测模型。首先,提出了ACMConv(Accurate and Computationally Minimal Convolution)新型卷积方式,显著减少了模型计算量,使模型更加轻量化;其次,使用SELU激活函数,引入非线性因素,有效缓解了梯度消失问题;最后,引入FocalLoss作为边界框损失函数,使模型更加容易收敛。实验结果表明,相较于原始 YOLOv8n模型,改进后的 YOLOv8n模型的平均精度均值提升了1.3百分点,计算量降低了7.3%,实现了对玉米与杂草的高效、准确检测。
关键词: 深度学习;杂草识别;YOLOv8n;激活函数;FocalLoss
中图分类号: TP391.41    文献标识码: A
基金项目: 贵州省科技计划[黔科合支撑(2021)一般176]
Weed Detection in Corn Fields Based on Improved YOLOv8n
WEN Tao, WANG Tianyi
(School of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China)
1815714855@qq.com; tywang@gzu.edu.cn
Abstract: In order to effectively address the impact of weeds on corn yield and quality, and to achieve rapid and accurate detection of corn and weeds, this paper proposes a corn and weed detection model based on the improved YOLOv8n (You Only Look Once Version 8 nano). Firstly, a novel convolution method called ACMConv (Accurate and Computationally Minimal Convolution) is introduced, which significantly reduces the computational load of the model, making the model more lightweight. Secondly, the SELU activation function is used to incorporate non-linear factors, effectively alleviating the vanishing gradient problem. Finally, Focal Loss is introduced as the bounding box loss function to facilitate the convergence of the model. Experimental results show that, compared to the original YOLOv8n model, the improved YOLOv8n model achieves a mean Average Precision increase of 1.3 percentage points and a 7.3% reduction in computational load, realizing efficient and accurate detection of corn and weeds.
Keywords: deep learning; weed recognition; YOLOv8n; activation function; Focal Loss


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫