• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:张芯源,高志刚,冯建文.基于YOLOv7-tiny的轻量级密集人群场景行人检测算法[J].软件工程,2025,28(1):46-51.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于YOLOv7-tiny的轻量级密集人群场景行人检测算法
张芯源1, 高志刚2, 冯建文1
(1.杭州电子科技大学计算机学院, 浙江 杭州 310018;
2.中国计量大学信息工程学院, 浙江 杭州 310019)
zhxy@hdu.edu.cn; gaozhigang@cjlu.edu.cn; fengjianwen@hdu.edu.cn
摘 要: 针对现有的高精度行人检测模型因资源要求高而导致的难以应用于边缘计算场景的问题,提出了一种 适用于边缘GPU设备的轻量级实时密集行人检测算法。该算法通过在检测头中融合全维度动态卷积,降低了冗余 信息对于检测效果的影响,并通过优化损失函数增强了算法区分待检测目标和背景的能力。实验结果表明,在密集 人群场景下的行人检测任务中,该算法在精确度方面较本文基线算法YOLOv7-tiny提升了4.1百分点,这证明该算 法能够在边缘计算场景下实现准确的密集人群检测。
关键词: 行人检测;小目标识别;深度学习;边缘计算
中图分类号: TP391    文献标识码: A
Lightweight Pedestrian Detection Algorithm for Dense Crowd Scenes based on YOLOv7-tiny
ZHANG Xinyuan1, GAO Zhigang2, FENG Jianwen1
(1.School of Computer, Hangzhou Dianzi University, Hangzhou 310018, China;
2.College of Inf ormation Engineering, China Jiliang University, Hangzhou 310018, China)
zhxy@hdu.edu.cn; gaozhigang@cjlu.edu.cn; fengjianwen@hdu.edu.cn
Abstract: In response to the challenges posed by existing high-precision pedestrian detection models, which require substantial resources and are thus difficult to apply in edge computing scenarios, this paper proposes a lightweight real-time dense pedestrian detection algorithm suitable for edge GPU devices. This algorithm reduces the impact of redundant information on detection performance by integrating full-dimensional dynamic convolution in the detection head, and enhances the algorithm's ability to distinguish between the target to be detected and the background through optimizing the loss function. Experimental results demonstrate that in pedestrian detection tasks within densely populated scenes, this algorithm improves accuracy by 4.1 percentage points compared to the baseline algorithm YOLOv7-tiny presented in this paper, proving that it can achieve accurate dense crowd detection in edge computing scenarios.
Keywords: pedestrian detection; small object recognition; deep learning; edge computing


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫