• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:隋知航,顾敏明.基于SSA-LSTM 的膝关节置换术后步态机能评估方法研究[J].软件工程,2024,27(11):6-10.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
基于SSA-LSTM 的膝关节置换术后步态机能评估方法研究
隋知航, 顾敏明
(浙江理工大学信息科学与工程学院, 浙江 杭州 310018)
202130605276@mails.zstu.edu.cn; guminming@zstu.edu.cn
摘 要: 针对膝关节置换术患者的术后康复过程中需要由康复医师完成定量评估,但这种传统方法的诊疗效率低的问题,提出一种基于麻雀搜索算法-长短期记忆神经网络(Sparrow Search Algorithm-Long Short-Term Memory, SSA-LSTM)的步态机能评估方法。该方法旨在通过高效、精确的量化评估,辅助康复医师更好地指导患者术后恢复。首先,提取了正常人和患者之间的步态时空参数,设计了回归评价指标;其次,利用麻雀搜索算法优化长短期记忆神经网络,构建了步态机能模型用于分析和评估。结果表明,相比传统回归模型,优化后模型的决定系数有所提升,平均绝对误差降低了25%,为膝关节置换术患者术后康复的步态分析提供了一种科学有效的量化评估方法。
关键词: 麻雀搜索算法;长短期记忆神经网络;步态机能评估;膝关节置换术;时空步态参数;惯性测量单元
中图分类号: TP391    文献标识码: A
Research on Gait Function Evaluation Method Based on SSA-LSTM After Knee Arthroplasty
SUI Zhihang, GU Minming
(School of In f ormation Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China)
202130605276@mails.zstu.edu.cn; guminming@zstu.edu.cn
Abstract: The quantitative evaluation of knee arthroplasty patients is completed by rehabilitation doctors during the postoperative recovery. However, this traditional methods have low diagnostic efficiency. Therefore, a gait function evaluation method based on Sparrow Search Algorithm-Long Short-Term Memory (SSA-LSTM) is proposed. This approach aims to assist rehabilitation physicians in better guiding patients' recovery through efficient and accurate quantitative assessments. Firstly, gait spatiotemporal parameters between normal individuals and patients are extracted and regression evaluation metrics are designed accordingly. Next, the Sparrow Search Algorithm is utilized to optimize the Long Short-Term Memory neural network and a gait function model is constructed for analysis and evaluation. The results indicate that compared to traditional regression models, the optimized model shows an improvement in the coefficient of determination and a 25% reduction in the mean absolute error, providing a scientifically effective and quantitative evaluation method for gait analysis in postoperative rehabilitation of knee arthroplasty patients.
Keywords: SSA; LSTM neural network; gait function evaluation; knee arthroplasty; Spatiotemporal gait parameters; IMU


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫