| 摘 要: 将形状记忆合金混编三维织物驱动器(SMA驱动器)植入复合材料板簧中,可以使大型板式结构具有变刚度潜力。为提高驱动器空间布置参数的寻优效率,文章基于BP神经网络预测不同驱动器布置参数下的板簧刚强度,并采用遗传算法提升预测精度。结果表明,经过遗传算法(Genetic Algorithm,GA)优化后的BP神经网络(Back Propagation Neural Networks)模型对板簧刚强度性能的平均预测精度为96.9%,优于传统BP神经网络的平均预测精度(92.7%),并且寻优效率比传统智能算法提升了172倍。该研究为大型板式结构的空间布置参数寻优算法提供了有益参考。 | 
			
	         
				| 关键词: SMA驱动器  空间布置参数  BP神经网络  遗传算法  寻优效率 | 
		
			 
                     
			
                | 中图分类号: TP391
			 
		
                  文献标识码: A | 
		
	   
            
                | 基金项目: 国家自然科学基金(52102430) | 
	     
          |  | 
           
                | Research on Stiffness and Strength Prediction of Variable Stiffness Composite Leaf Spring Based on GA-Optimized Neural Network | 
           
			
                | YANG Yinze, KE Jun | 
           
		   
                | (College of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China) 737848170@qq.com; jlukejun@163.com
 | 
             
                | Abstract: Embedding Shape Memory Alloy composite 3D fabric actuators (SMA actuators) into composite leaf spring can endow large plate-like structures with variable stiffness potential. To enhance the optimization efficiency of space layout parameters of actuators, this study uses a BP (Back Propagation) neural network to predict the leaf spring strength under different actuator layout parameters and employs Genetic Algorithm ( GA) to improve prediction accuracy. Results show that the BPNN (Back Propagation Neural Network) model optimized by GA achieves an average prediction accuracy of 96. 9% for leaf spring strength performance, outperforming the average prediction accuracy of traditional BPNN (92.7% ), and enhancing optimization efficiency by 172 times compared to traditional intelligent algorithms. This research provides valuable insights for optimizing the space layout parameters of large plate-like structures. | 
	       
                | Keywords: SMA actuators  space layout parameters  BP Neural Networks (BPNN)  GA  optimization efficiency |