• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:王铁禹,曹 新.一种基于机器视觉的笔杆表面缺陷检测方法[J].软件工程,2023,26(1):15-18.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
一种基于机器视觉的笔杆表面缺陷检测方法
王铁禹,曹 新
(大连东软信息学院,辽宁 大连 116023)
tieyu.wang@fitow.com; caoxin@neusoft.edu.cn
摘 要: 医疗器械产品生产中的笔杆表面缺陷是不可避免的问题,基于机器视觉的自动检测方法可以克服传统人工检测效率低、漏检及误检率高等问题。在分析笔杆结构和缺陷的基础上,文章重点研究笔杆边缘直线拟合、缺陷灰度值差异、图像边缘平滑和稳定等检测方法;通过实验证明,该方法准确率可达到98.8%,每个笔杆的检测时间为8.3 s,相较于人工检测,明显提高了检测精度和速度,可以满足对笔杆实时自动缺陷检测的要求。
关键词: 机器视觉;笔杆表面缺陷检测;直线拟合;边缘平滑;尺寸测量
中图分类号: TP311.5    文献标识码: A
A Surface Defect Detection Method for Penholder based on Machine Vision
WANG Tieyu, CAO Xin
(Dalian Neusoft University of Information, Dalian 116023, China)
tieyu.wang@fitow.com; caoxin@neusoft.edu.cn
Abstract: The surface defect detection of penholder is inevitable in producing medical devices. Automatic detection method based on machine vision can overcome problems of low efficiency, high rate of missed and false detection of traditional manual detection. Based on the analysis of the penholder structure and the defects, this paper focuses on detection methods, such as the straight line fitting of the penholder edge, the difference of the defect gray value, the smoothness and stability of the image edge, etc. Experiments show that the accuracy of the proposed method can reach 98.8%, and the detection time for each penholder is 8.3 seconds. Compared with manual detection, this algorithm significantly improves the detection accuracy and speed, and can meet the requirements of real-time automatic defect detection of penholder.
Keywords: machine vision; surface defect detection for penholder; straight line fitting; smooth edge; dimensional measurement


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫