| 摘 要: 针对虚拟试衣中特征提取不足、人物肢体被衣服遮挡的问题,在基于图像特征保留的虚拟试衣方法基础上,提出基于并行卷积核的Attention U-Net虚拟试衣方法。该方法采用并行卷积核代替原有的3×3卷积核来提取特征,并在U-Net网络中融入注意力机制形成新的Attention U-Net图像合成器,通过不断调整网络学习参数,将模型放在数据集VITON Dataset上进行虚拟试衣实验。实验结果表明,与原方法相比,该方法能提取出更多的细节纹理,在结构相似性上提升了15.6%,虚拟试衣效果更好。 | 
			
	         
				| 关键词: 虚拟试衣  特征提取  并行卷积核  注意力机制  结构相似性 | 
		
			 
                     
			
                | 中图分类号: TP391.41
			 
		
                  文献标识码: A | 
		
	   
            
                | 基金项目: 绍兴市技术创新计划(揭榜挂帅)项目(2020B41006). | 
	     
          |  | 
           
                | Research on Attention U-Net Virtual Try-On Method based on Parallel Convolution Kernel | 
           
			
                | SHU Xingzhe | 
           
		   
                | (School of Information, Zhejiang Sci-Tech University, Hangzhou 310018, China) 1036413161@qq.com
 | 
             
                | Abstract: Virtual try-on has problem of insufficient feature extraction in and people's limbs being covered by clothes. On the basis of the virtual try-on method with image feature retention, this paper proposes an Attention U-Net virtual try-on method based on parallel convolution kernel. In this method, parallel convolution kernel is used to replace the original 3×3 convolution kernel to extract features, and the attention mechanism is integrated into the u-net network to form a new Attention U-Net image synthesizer. By constantly adjusting the network learning parameters, the model is placed on the data set VITON (Virtual Try-On Network) Dataset for virtual fitting experiment. Experimental results show that compared with the original method, the proposed method can extract more detailed textures, improve the structural similarity by 15.6%, and the virtual fitting effect is better. | 
	       
                | Keywords: virtual try-on  feature extraction  parallel convolution kernel  attention mechanism  structural similarity |