• 首页
  • 期刊简介
  • 编委会
  • 投稿指南
  • 收录情况
  • 杂志订阅
  • 联系我们
引用本文:顾爱华,李玟函,王正乾,殷作好,叶凯宁,陈 玉.一种基于支持向量机的金属表面缺陷检测方法[J].软件工程,2021,24(8):26-30.【点击复制】
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  
←前一篇|后一篇→ 过刊浏览
分享到: 微信 更多
一种基于支持向量机的金属表面缺陷检测方法
顾爱华,李玟函,王正乾,殷作好,叶凯宁,陈 玉
(盐城师范学院信息工程学院,江苏 盐城 224002)
guaihua1978@163.com; liwenhan1127@163.com; 2794965946@qq.com; 2693704323@qq.com; 2506331929@qq.com; 7042799@qq.com
摘 要: 针对金属表面缺陷检测中存在的图像失真、构造分类器精确度不高及系统计算量大的问题,现提出一种高质量的基于支持向量机的金属表面缺陷检测方法。采用形态学方法对图像进行预处理,通过融合GLCM与HOG特征提取到的结果建立较为完备的缺陷模型,便于后期构造高精度分类器。最后,利用OTSU算法进行阈值分割,通过计算连通分量个数等方法进行缺陷分析。相较于一般的缺陷检测方法,该检测方法准确率达到96.67%,提高了缺陷检测的效率。
关键词: 缺陷检测;图像处理;SVM分类器
中图分类号: TP391    文献标识码: A
基金项目: 江苏省产学研合作项目(BY2020626).
A Metal Surface Defect Detection Method based on Support Vector Machine
GU Aihua, LI Wenhan, WANG Zhengqian, YIN Zuohao, YE Kaining, CHEN Yu
(College of Information Engineering, Yancheng Teachers University, Yancheng 224002, China)
guaihua1978@163.com; liwenhan1127@163.com; 2794965946@qq.com; 2693704323@qq.com; 2506331929@qq.com; 7042799@qq.com
Abstract: Aiming at the problems of image distortion in metal surface defect detection, inaccuracy of construction classifier and large amount of system calculation, this paper proposes a high-quality metal surface defect detection method based on support vector machine. Morphological methods are used to preprocess the image, and a relatively complete defect model is established by fusing the results extracted from GLCM (Gray-level Co-occurrence Matrix) and HOG (Histogram of Oriented Gradient) features, which is convenient for constructing a high-precision classifier in the later stage. Finally, OTSU algorithm is used to perform threshold segmentation, and defect analysis is performed by calculating the number of connected components. Compared with general defect detection methods, the proposed detection method improves the efficiency of defect detection and its accuracy rate is as high as 96.67%.
Keywords: defect detection; image processing; SVM (Support Vector Machine) classifier


版权所有:软件工程杂志社
地址:辽宁省沈阳市浑南区新秀街2号 邮政编码:110179
电话:0411-84767887 传真:0411-84835089 Email:semagazine@neusoft.edu.cn
备案号:辽ICP备17007376号-1
技术支持:北京勤云科技发展有限公司

用微信扫一扫

用微信扫一扫