| 摘 要: 世界上很多高价值的数据信息储存在关系数据库中,访问这些数据需要掌握专门的结构化查询语言(SQL),普通人很难直接使用。基于对现有对话机器人存在的问题和相关关键技术的梳理,本文融合了数据仓库、数据同步、数据库查询、消息推送、自然语言理解及语音识别等相关技术及产品,设计了数据库驱动的对话机器人。方案可以实现用户理解、消息推送、事实数据查询和分析数据查询四个功能,使得用户能够快速地获取信息。本文提出的数据库驱动的对话机器人具有较强的泛化性和可扩展性。 | 
			
	         
				| 关键词: 关系型数据库  对话机器人  SQL  消息推送 | 
		
			 
                     
			
                | 中图分类号: TP183
			 
		
                  文献标识码: A | 
		
	   
          |  | 
           
                | Research on Database-driven Chatbot | 
           
			
                | LAI Guanjun1,2, YU Dan1,2, YAN Xiaoyu1,2, XIAO Peng1,2 | 
           
		   
                | ( 1. Dalian Neusoft University of Information, Dalian 116023, China ; 2. Research Institute, Dalian Neusoft Education Technology Group Co. Limited, Dalian 116023, China)
 laiguanjun@neuedu.com; yudan@neuedu.com; yanxiaoyu@neuedu.com; xiaopeng@neuedu.com
 | 
             
                | Abstract: Many high-value data in the world are stored in relational databases. Access to these data requires a special Structured Query Language (SQL), which is difficult for ordinary people to use directly. Aiming at problems of the existing chatbot, this paper proposes to design database-driven chatbots by integrating related technologies and products, such as data warehouse, data synchronization, database query, message push, natural language understanding and speech recognition. The solution realizes four functions: user understanding, message push, fact-data query and analysis-data query, so that users can quickly obtain information. Database-driven chatbots proposed in this paper has a capability of strong generalization and scalability that enable chatbots to work with data-driven conversations. | 
	       
                | Keywords: relational database  chatbot  SQL  message push |