| 摘 要: 为提高叠前逆时偏移计算效率,本文采用MPI+CUDA混合粒度相结合的并行模式,对地震数据进行数据 分割,合理划分并行任务。总结出MPI+CUDA并行编程模型,提出叠前逆时偏移的混合粒度并行算法。根据CUDA特 有的存储方式,对叠前逆时偏移算法提出存储优化方案,更高效的利用GPU上各类存储器,以进一步降低数据访问所 造成的时间延迟。 | 
			
	         
				| 关键词: 图形处理器  叠前逆时偏移  混合粒度  并行计算  存储优化 | 
		
			 
                     
			
                | 中图分类号: TP391
			 
		
                  文献标识码: A | 
		
	   
          |  | 
           
                | The Hybrid Granularity Data Segmentation and Storage Optimization of Prestack Reverse-Time Migration Based on GPU | 
           
			
                | HAN Fei,LI Wei1,2 | 
           
		   
                | 1.( 1.Lenovo Beijing Co.LTD., Beijing 100094, China;2. 2.Lenovo Beijing Information Technology Co.LTD., Beijing 100094, China)
 
 | 
             
                | Abstract: To improve the computational efficiency of prestack reverse-time migration,this paper adopts the MPI + CUDA parallel model to divide seismic data and parallel tasks.The MPI + CUDA parallel programming model is summarized and the hybrid granularity parallel algorithm of prestack reverse-time migration is proposed.Based on the special storage model of CUDA,we propose the storage optimization scheme for prestack reverse-time migration algorithm so as to reduce time delay caused by the data access with higher involvements of all kinds of memories on GPU. | 
	       
                | Keywords: GPU  prestack RTM  hybrid granularity  parallel computing  storage optimization |